Autoplay
Autocomplete
Previous Lesson
Complete and Continue
2022 Machine Learning and AI Bootcamp: Zero to Hero
Overview
Overview (11:13)
Introduction
What is Data and why you should learn about it (4:43)
What is Machine Learning and its applications (10:11)
Lifecycle of Machine Learning (4:14)
Feature engineering
Feature Handling (8:48)
Handling Missing Data - Part 1 (6:45)
Handling Missing Data - Part 2 (7:06)
Handling Missing Data Notes
Handling Outliers - Part 1 (6:25)
Handling Outliers - Part 2 (7:57)
Handling Outliers Notes
Binning (9:30)
Binning Notes
Encoding - Part 1 (7:24)
Encoding - Part 2 (8:04)
Encoding Notes
Scalling - Part 1 (9:42)
Scalling - Part 2 (8:34)
Scalling Notes
Downloadable IPYNB File Notes
Machine Learning Terminologies
Introduction and Lifecycle (4:59)
Classification of Machine Learning - Supervised Algorithms (6:52)
Unsupervised Learning (8:53)
Reinforcement Learning (1:49)
Real World Examples (4:34)
Spliting data (8:02)
Train Test Split (4:41)
Split the data Notes
Downloadable IPYNB File Notes
Linear Regression - Regression Analysis
Regression Analysis - Part 1 (6:59)
Regression Analysis - Part 2 (9:42)
Linear regression - Univariate Regression
Univariate Regression Theory - Part 1 (7:32)
Univariate Regression Theory - Part 2 (5:06)
Univariate Regression Theory - Part 3 (6:03)
Univariate Regression Theory - Part 4 (7:22)
Univariate Regression Theory - Part 5 (7:02)
Univariate Regression using sklearn Theory (4:10)
Univariate Regression Lab - Part 1 (8:08)
Univariate Regression Lab - Part 2 (8:29)
Univariate Regression Lab - Part 3 (6:50)
Univariate regression - Evaluation metrics of Regression Lab (13:23)
Univariate Linear Regression Notes
Downloadable IPYNB File Notes
Linear Regression - Multivariate Regression
Multivariate Regression Theory - Part 1 (4:10)
Multivariate Regression Theory - Part 2 (5:39)
Multivariate Regression - Load Dataset Lab (8:10)
Multivariate Regression - EDA Lab (9:02)
Multivariate Regression - Fit Model Lab (7:56)
Multivariate Linear regression Notes
Downloadable IPYNB File Notes
Linear Regression - Polynomial Regression
Polynomial Regression Theory (6:27)
Polynomial Regression Lab- Part 1 (7:46)
Polynomial Regression Lab- Part 2 (5:15)
Polynomial Regression Notes
Downloadable IPYNB File Notes
Linear Regression - Decision Tree Regression
Decision Tree Introduction Theory (8:59)
Decision Tree Regression Theory (8:55)
Random Forest Regression Theory (7:26)
Decision Tree Regression Lab (8:48)
Visualize decision tree Regressor Lab (9:21)
Random forest Regressor Lab (6:28)
Decision Tree and Random Forest Regression Notes
Downloadable IPYNB File Notes
Linear regression - Hyperparameter Tuning
HyperParameter Intuition (7:11)
RF Regressor (9:41)
Grid Search (8:13)
Random Search (5:43)
HyperParameter tuning Notes
Downloadable IPYNB File Notes
Regression Project
Problem (5:22)
Regression Project
Solution 1 (7:26)
Solution 2 (4:47)
Solution 3 (8:46)
Solution 4 (7:46)
Regression Project - Solutions
Downloadable IPYNB File Notes
Model Diagnotics
Model Diagnostics (6:22)
Bias and Variance (11:41)
Tradeoff between Bias and Variance (7:32)
Overfitting and Underfitting (11:11)
Classification
Classification Problems (5:36)
Confusion Matrix (7:07)
Metrics (10:20)
Practice (5:11)
Logistic Regression
Logistic Regression Intro (6:32)
Logistic Regression Maths intuitions Theory - Part 1 (5:26)
Logistic Regression Maths intuitions Theory - Part 2 (9:17)
Logistic Regression Maths intuitions Theory - Part 3 (7:29)
Logistic Regression Lab - Part 1 (5:07)
Logistic Regression Lab - Part 2 (8:22)
Logistic Regression Lab - Part 3 (10:19)
Logistic Regression Lab - Part 4 (8:07)
Logistic Regression Lab - Part 5 (6:10)
Logistic Regression (optional) (6:09)
Logistic Regression Notes
Downloadable IPYNB File Notes
KNN
KNN Intro (6:21)
KNN Algo Intuition (6:28)
KNN Distance Functions (9:42)
Finding K (6:33)
Problem Understanding Lab (5:52)
Scalling and Spliting Data Lab (6:40)
Training our first KNN model (5:56)
Finding optimal value of k (9:34)
KNN Notes
Downloadable IPYNB File Notes
SVM
Overview (8:40)
SVM Types (3:00)
Import Dataset (5:45)
EDA 1 (9:24)
EDA 2 (12:51)
Encoding (7:28)
Training (4:34)
Prediction and Evaluation (6:58)
SVM Notes
Downloadable IPYNB File Notes
Decision Tree
DS Tree Intro (9:12)
DS Tree Algo (9:12)
DS Tree ASM 1 (5:36)
DS Tree ASM 2 (5:35)
DS Tree Advantage and Disadvantage (4:03)
DS Load Dataset (7:25)
DS EDA (9:17)
DS Prediction and Evaluation (8:18)
DS Model Training (7:34)
Visualization Model (7:13)
Decision Tree Notes
Downloadable IPYNB File Notes
Random Forest
RFC Intro (7:50)
RFC Deep (4:48)
Import and EDA (7:31)
Model Training and Evaluation (7:10)
Random Forest Notes
Downloadable IPYNB File Notes
Classification Project
Problem Statement (3:38)
Classification project Notes
Problem Solution - Part 1 (12:59)
Problem Solution - Part 2 (7:27)
Classification project - Solution Notes
Downloadable IPYNB File Notes
K-means Clustering
Clustering Intro (10:25)
K-means clustering - Part 1 (8:25)
K-means clustering - Part 2 (7:57)
Elbow Method (6:56)
K-means Lab - Part 1 (4:39)
K-means Lab - Part 2 (5:39)
K-means Lab - Part 3 (5:51)
K-means clustering Notes
Downloadable IPYNB File Notes
PCA
PCA Theory - Part 1 (5:38)
PCA Theory - Part 2 (7:34)
PCA Theory - Part 3 (4:23)
PCA Theory - Part 4 (10:09)
PCA Lab - Part 1 (8:22)
PCA Lab - Part 2 (9:47)
PCA Lab - Part 3 (8:41)
Principal Component Analysis Notes
Downloadable IPYNB File Notes
Teach online with
What is Data and why you should learn about it
Lesson content locked
If you're already enrolled,
you'll need to login
.
Enroll in Course to Unlock